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Yul is an intermediate language used in the compilation of the Solidity programming language for
Ethereum smart contracts. The compiler applies customizable sequences of transformations to Yul
code. To help ensure the correctness of these transformations and their sequencing, we used the
ACL2 theorem prover to develop a formalization of the syntax and semantics of Yul, proofs relating
static and dynamic semantics, a formalization of some Yul code transformations, and correctness
proofs for these transformations.

1 Introduction

Solidity [21, 18] is a programming language for writing smart contracts for the Ethereum blockchain [9].
Solidity is compiled to EVM (Ethereum Virtual Machine) bytecode [26], which is directly executed by
transactions on the blockchain. The Solidity compiler includes the preferred option to translate Solidity
to EVM bytecode via the intermediate language Yul [20] (see Figure 1): first, Solidity is turned into Yul
with a relatively simple translation; next, the Yul code undergoes several optimizing transformations;
finally, the optimized Yul code is turned into EVM bytecode with another relatively simple translation.
The rationale is to move most of the compilation complexity into the Yul code transformations, which
eases the task because Yul is simpler than Solidity and more structured than EVM bytecode. Yul is also
used to write inline assembly in Solidity, i.e. to embed EVM bytecode (with Yul syntax) directly in the
Solidity code, which is sometimes necessary in Ethereum smart contracts.

Yul is designed to be usable as an intermediate language to compile other front ends than Solidity
to other back ends than EVM bytecode. In line with this aspiration, Yul consists of a core (‘pure Yul’
or ‘generic Yul’) independent from front and back ends, which is extensible with dialects tailored to
specific front and back ends. Currently only the EVM dialect is defined, for compiling Solidity to EVM
bytecode. A Yul dialect extends the Yul core with specific types and operations.

A few tens of Yul transformations have been defined and implemented [19]. Some are dialect-
independent, while others are EVM-dialect-specific. Some transformations assume that others have
already taken place, i.e. they expect the code to be in a certain form, which the previous transformations
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Figure 1: Solidity Compiler with Yul Transformations

http://dx.doi.org/10.4204/EPTCS.423.8
https://creativecommons.org
https://creativecommons.org/licenses/by/4.0/
https://kestrel.edu


66 Yul Formalization and Transformations

produce. Some transformations, or sequences of transformations, may be iterated, i.e. applied multiple
times until either nothing changes or an iteration limit is reached. The Solidity compiler uses a default
sequence of transformations, which can be overridden by the user.

It is critical that Yul transformations and their sequencing are correct. Each transformation must be
applied to code of the expected form, as produced by the preceding transformations, and must produce
code semantically equivalent to the input code. This paper reports on our preliminary work towards
addressing these problems, using the ACL2 theorem prover [12]. We developed a formalization of the
syntax and semantics of Yul, which covers the generic core and a small portion of the EVM dialect;
we proved some properties of the formalization, most notably that the static semantic checks rule out
dynamic semantic errors. We formalized some Yul transformations, and verified that they preserve both
static and dynamic semantics. We formalized some restrictions on Yul code that are expected by some
transformations, and verified that they are preserved by some transformations. Although we have only
scratched the surface of verifying transformations and their sequencing, we believe that our work shows
the feasibility of the approach. Our ACL2 library for Yul, which contains our development, is available
at [25, [books]/kestrel/yul] and documented at [24, yul].

After providing some background on Yul in Section 2, we describe our formalization of Yul in Section
3, and our work on verified transformations in Section 4. Related work is surveyed in Section 5, while
future work is discussed in Section 6. Some closing remarks are given in Section 7.

Background on Solidity and the EVM can be found in a variety of sources, starting with the Ethereum
web site [9]. However, knowledge of Solidity and the EVM is not required to read this paper.

2 Background on Yul

Yul is a statically typed, block-structured, imperative language. Statements consist of function defini-
tions, variable declarations and assignments, conditionals, loops, control transfers, expressions (for side
effects), and nested blocks. Expressions consist of literals, variables, and function calls. A function takes
zero or more inputs and returns zero or more outputs; if it returns no outputs, it is only used for side
effects, as a statement.

The Yul core has no types, and no syntax to define types. The EVM dialect has a single type u256,
consisting of 256-bit unsigned integers. If a type is omitted (e.g. in a variable declaration), it defaults to
a type specified by the dialect; the EVM dialect necessarily defaults to u256, which is the only type.

The Yul core includes boolean literals (true and false), numeric literals in decimal and hexadecimal
base (e.g. 64738 and 0xff0012), and certain forms of string literals (e.g. "abc" and hex"90a4"). The
EVM dialect defines the meaning of literals as u256 values: boolean literals denote 0 and 1, numeric
literals denote the obvious, and string literals yield byte sequences interpreted as integers in base 256. It
is a static error if a literal denotes 2256 or more, e.g. if a string literal yields more than 32 bytes.

Variables are declared via the let keyword, with or without a type (see above), and with or without
an initializing expression; if the latter is missing, the variable is initialized to 0. In the EVM dialect,
let x declares a variable x of type u256 initialized to 0, while let y := x declares a variable y of type
u256 initialized to the current value of x. A variable assignment is like a variable declaration without
let, e.g. x := 17 assigns 17 to x. A call of a function that returns two or more outputs can be used to
initialize, or to assign to, multiple variables, e.g. let a, b := f(...) initializes a and b to the first
and second result of f. If multiple variables are declared without initializing expressions, they are all
initialized to 0, as in the case of a single variable, e.g. let a, b.

A function definition returns results by assigning them to its output variables, which are declared as
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part of the function definition, along with the input variables. For example, in a function definition of
the form function f(x, y) -> a, b { ... a := ... b := ... }, the input variables are x and
y, and the output variables are a and b. If a function terminates execution without assigning a value to
some output variables, the corresponding result is 0. The leave statement can be used to return from a
function, whose execution otherwise terminates at the end of its body block.

The Yul core has no built-in functions. The EVM dialect provides several tens of built-in functions,
corresponding to EVM bytecode instructions. For example, the function add, which takes two u256
inputs and returns their u256 sum (modulo 2256), corresponds to the EVM bytecode instruction ADD. An
assignment like z := add(x, y) in inline assembly represents, and is translated to (as the last compi-
lation step), an ADD instruction in EVM bytecode. Although the EVM is stack-based, Yul is essentially
register-based (where the registers are the variables); the rationale is to facilitate understanding and ma-
nipulation of Yul code, while keeping the translation to EVM bytecode still relatively simple.

for loops are structurally similar to C and Java: there is an initialization block, a test expression, an
update block, and a body block; the break and continue statements can be used to break out of a loop
or to skip the rest of an iteration. if conditionals have a ‘then’ branch and no ‘else’ branch. switch
conditionals have case branches based on literals, and optional default branches. There are no go-to
statements; the rationale for this, and for having structured control flow, is to facilitate understanding and
manipulation of Yul code.

Blocks are delimited by curly braces, i.e. { ... }, as in many other languages. Statements are not
terminated by semicolons; note that there are no infix operators, only function calls, which makes parsing
easier. There are line comments // ... and block comments /* ... */, as in many other languages.

The Yul documentation [20] includes a grammar, as is customary, and a semi-formal semantics,
which is much less customary. The latter is an evaluation function over the Yul syntactic constructs,
written in a mix of mathematics, pseudo-code, and English prose.

3 Yul Formalization

Our formalization covers the Yul core and a small portion of the EVM dialect. Extending it to cover the
whole EVM dialect, and generalizing it to accommodate other dialects, are both future work.

3.1 Abstract Syntax

The abstract syntax is the fulcrum of our development: concrete syntax abstracts to it; static and dynamic
semantics are defined on it; and transformations manipulate it. For defining static and dynamic semantics,
the abstract syntax could abstract away all the concrete syntax information that does not affect said
semantics. But for defining transformations, it is beneficial to retain enough concrete syntax information
to reduce incidental differences between code before and after transformations, to facilitate inspection
and debugging; however, retaining excessive concrete syntax information may add complexity without
significant additional benefit. In formalizing the abstract syntax, we tried to strike the right balance: we
keep all the syntactic details of literals, but we drop whitespace and comments.

The abstract syntax is formalized as a collection of algebraic data types, using the fixtype library [23]
[24, fty]. For example, expressions are formalized as

(fty::deftagsum expression
(:path ((get path)))
(:literal ((get literal)))
(:funcall ((get funcall)))

http://acl2.org/manual?topic=ACL2____FTY
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:pred expressionp)

i.e. an expression is either a path, or a literal, or a function call; a path is a sequence of identifiers
separated by dots, which are used as variable names.1 As another example, statements are formalized as

(fty::deftagsum statement
(:block ((get block)))
(:variable-single ((name identifier) (init expression-option)))
(:variable-multi ((names identifier-list) (init funcall-optionp)))
(:assign-single ((target path) (value expression)))
(:assign-multi ((targets path-list) (value funcall)))
(:funcall ((get funcall)))
(:if ((test expression) (body block)))
(:switch ((target expression) (cases swcase-list) (default block-option)))
(:for ((init block) (test expression) (update block) (body block)))
(:break ())
(:continue ())
(:leave ())
(:fundef ((get fundef)))
:pred statementp)

i.e. a statement is either a block, or a (single or multiple) variable declaration, or a (single or multiple)
variable assignment, or a function call, or an (if or switch) conditional, or a (for) loop, or a (break
or continue or leave) control transfer, or a function definition. Overall, the definition of the abstract
syntax is unremarkable, directly derived from the concrete syntax.

3.2 Concrete Syntax

To formalize the concrete syntax, we developed an ABNF [7, 15] grammar of Yul, as a straightforward
transcription of the grammar in [20, 18].2 For example, the ABNF grammar rule for expressions is

expression = path / literal / function-call

and the ABNF grammar rule for statements is
statement = block / variable-declaration / assignment / function-call

/ if-statement / switch-statement / for-statement
/ %s"leave" / %s"break" / %s"continue" / function-definition

which also show the correspondence with the examples in Section 3.1.3 The verified ABNF grammar
parser [2] [24, abnf::grammar-parser] turns the ABNF grammar of Yul into an ACL2 representation
with formal semantics, according to the formalization of the ABNF notation [2] [24, abnf::notation].

As is customary in programming languages, the grammar consists of a lexical sub-grammar, which
specifies how sequences of characters are organized into lexemes (i.e. tokens, whitespace, and com-
ments), and a syntactic sub-grammar, which specifies how tokens (after discarding whitespace and com-
ments) are organized into expressions, statements, and related constructs. As is also customary, the
lexical sub-grammar is further constrained by taking the longest possible lexeme at each point (e.g. xy is
a single lexeme, not two lexemes x and y), and by the fact that keywords are not identifiers. A complete
formalization of the concrete syntax should include these restrictions, but this is future work.

1The motivation for using paths as variable names seems to be that Yul variables may represent nested fields in Solidity.
2As explained in [24, yul::concrete-syntax], [20, 18] contains an old grammar and a new grammar, both of which we

have transcribed to ABNF. This paper focuses on the new grammar, for which we have also developed a parser.
3While the abstract syntax of statements has different cases for single and multiple variable declarations and assignments,

the grammar makes that distinction in the rules for variable-declaration and assignment (not shown here).

http://acl2.org/manual?topic=ABNF____GRAMMAR-PARSER
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We developed an (unverified) executable parser of Yul in ACL2. The lexer is partially generated,
via some preliminary ABNF parser generation tools [24, abnf::defdefparse]; the rest is handwritten,
closely following the lexical grammar. The parser proper is handwritten, closely following the syntactic
grammar, according to a recursive descent strategy.

3.3 Static Semantics

The static semantics consists of efficiently checkable restrictions on the syntax, informally stated in [20].
An example is that a function must be called with the right number of arguments. The Solidity compiler
must: enforce these restrictions on inline assembly; translate Solidity code to Yul code that satisfies these
restrictions; and transform Yul code preserving these restrictions. The static semantics is formalized as
executable ACL2 functions that check these restrictions recursively on the abstract syntax.

The Yul scoping rules involve the notions of visibility and accessibility, which differ between func-
tions and variables. They are explained below, using the following code as example:

{ // block 1:
let x
function f () { // block 2:

function h () { ... }
let y
{ // block 3:

let z
}

}
function g () { // block 4:

let y
function h () { ... }

}
}

A function is both visible and accessible in the whole block where its definition occurs, even before
the definition, and including all the nested blocks. In the example above: f and g are visible and ac-
cessible everywhere in block 1 (including blocks 2, 3, and 4), but not outside block 1; the h defined in
f is visible and accessible everywhere in block 2 (including block 3), but not outside block 2 (e.g. not
in block 4); and so on. A function definition is disallowed if the function name is already visible and
accessible, e.g. no function g can be declared in f. The h defined in f is distinct from the h defined in g.

A variable is visible from just after its declaration to the end of the block where it occurs, including all
the nested blocks; the variable is accessible in the same portion of the block, except in nested functions.
In the example above: x is visible in the portion of block 1 just after its declaration, including blocks
2, 3, and 4, but it is not accessible in blocks 2, 3, and 4; the y declared in f is visible in the portion of
block 2 just after its declaration, including block 3, and it is also accessible in block 3; and so on. A
variable declaration is disallowed if the variable name is already visible, regardless of whether it is also
accessible. The y declared in f is distinct from the y declared in g.

Visibility means lexical scoping, i.e. which names can be seen from where, while accessibility means
the ability to reference those seen names. When a function is called, a fresh variable area is created,
without the ability to reference the variables of the caller: this is why accessibility of variables stops at
function boundaries, and why the notions of visibility and accessibility differ for variables. For functions,
visibility and accessibility coincide.

http://acl2.org/manual?topic=ABNF____DEFDEFPARSE
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Our formalized static semantics checks the above scoping rules, using symbol tables for variables
and functions. Since neither the Yul core nor the EVM dialect have syntax for types, symbol tables for
variables are just finite sets of variable names (all of which have the same type), while symbol tables for
functions are finite maps from function names to function “types”, where the latter are pairs (n,m) where
n is the number of inputs and m is the number of outputs. A function must be called with n arguments;
the call must be a statement if m = 0 (for side effects), or used to initialize or assign m variables if m ̸= 0.

Restrictions on where break, continue, and leave may occur are enforced by calculating and
checking the possible ways in which statements and blocks may terminate. There are four possible ways,
called ‘modes’ (also used in the dynamic semantics; see Section 3.4): three modes corresponding to
those three statements, and one mode corresponding to ‘regular’ termination.

Most static semantic checks are dialect-independent, except that literals are interpreted as denoting
u256 values, which are thus checked to be below 2256; this is EVM-dialect-specific. Our static semantics
provides the option to initialize the function symbol table with the types of the built-in functions of the
EVM dialect, so that Yul code in the EVM dialect can be properly checked.

3.4 Dynamic Semantics

The dynamic semantics is formalized as a defensive big-step executable interpreter of the abstract syntax.
Each call of an ACL2 function of the interpreter attempts to execute its input abstract syntax construct
completely, recursively executing the sub-constructs. Since the execution of certain constructs may not
terminate, the ACL2 functions take, as additional input, an artificial counter that limits the depth of
the mutual recursion: the counter is decremented by one at each recursive call, and used as measure,
making the termination proof straightforward. The interpreter is defensive in the sense that it checks the
necessary safety conditions, e.g. that each function is called with the right number of arguments, without
relying on the static semantics (see Section 3.5 for the relation between static and dynamic semantics).

This approach matches the semi-formal semantics in [20], which is also a big-step interpreter. Be-
sides the syntactic construct (expression, statement, etc.), the interpreter takes as input, and returns as
output, a global state G, which is dialect-specific, and a local state L, which is dialect-independent; the
interpreter also returns one of the four termination modes described in Section 3.3. L is the state of the
local variables. In the EVM dialect, G consists of various areas of memory, and provides read access to
some blockchain state (e.g. current block number). Our ACL2 interpreter has the same structure.

The ACL2 function to execute statements is
(define exec-statement

((stmt statementp) (cstate cstatep) (funenv funenvp) (limit natp))
:returns (outcome soutcome-resultp)
(b* (((when (zp limit)) ...)) ; return limit error

(statement-case stmt
:block (exec-block stmt.get cstate funenv (1- limit))
:leave (make-soutcome :cstate cstate :mode (mode-leave))
...)) ; handle the other kinds of statement

:measure (nfix limit))

where:
• stmt is the statement, which is handled by cases (see the type definition in Section 3.1).
• cstate is a computation state, which wraps a finite map from variable names to 256-bit unsigned

integers, modeling the local state L, tailored to the EVM dialect because values have type u256:
(fty::defprod cstate

((local lstate)) ; finite map from identifiers to values
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:pred cstatep)
We do not yet model the global state G (which is complex), but the reason to wrap the type lstate
into cstate is to accommodate the future addition of a (global gstate) component. The local
state is a flat map, not a stack of maps corresponding to scopes, because each called function starts
a new local state (consisting of the function’s input and output variables), and because nested block
scopes cannot shadow variables.

• funenv is a function environment, i.e. a stack of finite maps from function names to function
information consisting of inputs, outputs, and body:

(fty::defprod funinfo
((inputs identifier-list)
(outputs identifier-list)
(body block))

:pred funinfop)
Unlike the local state, the function environment is a stack because of the different scoping rules of
functions compared to variables: the stack corresponds to the lexical scoping of functions; when a
function is called, the stack is trimmed down to the scope of that function. With reference to the
example code in Section 3.3: when executing the h defined in g, the function environment contains
a scope for block 1 with f and g, a scope for block 4 with h, and a scope for the body of h; if h
calls f, the two top scopes are popped, leaving only the one for block 1, because f can only access
the functions in that scope.

• limit is the artificial counter, which exec-statement tests with zp as first thing, returning an
error value indicating that the limit is exhausted if that is the case. This limit is decremented at
each recursive call, e.g. in the call of exec-block, and used as measure for the mutual recursion.

• outcome is either an error value or a statement outcome of type
(fty::defprod soutcome

((cstate cstate)
(mode mode))

:pred soutcomep)
which consists of a possibly updated computation state and a mode of termination. Inspired by the
Result type in Rust, the type soutcome-result extends soutcome with error values.

• A block statement is executed by executing the block with a separate function exec-block, which
extends the function environment with a new scope, executes the statements in the block, and then
pops the function environment and reduces the local state to the variables before the block (the
function exec-block is not shown here).

• The execution of a leave statement returns the leave termination mode without changing the
computation state. That termination mode is propagated upwards, and treated the same as regular
termination by the ACL2 function exec-function that executes Yul functions.

• The code to execute the other kinds of statements is not shown.
The execution of expressions returns an error value or an expression outcome of type
(fty::defprod eoutcome

((cstate cstate)
(values value-list))

:pred eoutcomep)

which is analogous to statement outcomes, but with a list of zero or more values instead of a termination
mode. Although function calls, and thus expressions, have no side effects on the local state, because each
function has its own local state, our ACL2 interpreter accommodates the extension with side effects on
the global state, since expression outcomes include a possibly updated computation state.
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Besides returning an error value when the artificial limit is exhausted, our ACL2 interpreter returns
an error value when a defensive check fails, e.g. a referenced variable or function is not accessible, a
break is executed outside a loop body, a function is given the wrong number of arguments, etc.

Except for using values of type u256, the current interpreter has no support for the EVM dialect.
Adding support involves modeling the global state G and modeling the EVM built-in functions via ACL2
code that manipulates the global state. Adding this support is future work.

3.5 Static Soundness

We proved the soundness of the static semantics with respect to the dynamic semantics: if the checks
of the static semantics are satisfied, the dynamic semantics never returns an error value, except when
the artificial limit is exhausted. In other words, the defensive checks of the dynamic semantics are
guaranteed to succeed if the checks of the static semantics succeed. This kind of property provides a
major validation of the design and formalization of a programming language. The converse property,
i.e. static completeness, namely that if the dynamic semantics never returns error values (except for
exhausting the artificial limit) then the static semantics succeeds, cannot hold for any decidable static
semantics, because it is undecidable whether the dynamic semantics returns error values.4

This formulation of static soundness relies on the fact that, in the Yul core covered by our dynamic
semantics (see Section 3.4), the only error values are for the exhaustion of the artificial limit and for
defensive checks also checked by the static semantics. If some dialect-specific built-in function can fail
in ways not detectable by the static semantics (e.g. division by zero), then static soundness should be
reformulated to rule out only the errors detectable by the static semantics.

The static semantics involves function and variable symbol tables, while the dynamic semantics
involves function environments and computation states. To formulate static soundness, those are related
as follows: a function environment abstracts to a function symbol table, merging the scopes and only
keeping the numbers of inputs and outputs of each function; and a computation state abstracts to a
variable symbol table, keeping only the variables in the domain of the local state map.

There is a static soundness theorem for each mutually recursive ACL2 function, proved by induction
on the mutual recursion. The theorem for expression execution is

(defthm exec-expression-static-soundness
(b* ((results (check-safe-expression

expr (cstate-to-vars cstate) (funenv-to-funtable funenv)))
(outcome (exec-expression expr cstate funenv limit)))

(implies (and (funenv-safep funenv)
(not (reserrp results))
(not (reserr-limitp outcome)))

(and (not (reserrp outcome))
(equal (cstate-to-vars (eoutcome->cstate outcome))

(cstate-to-vars cstate))
(equal (len (eoutcome->values outcome))

results)))))

4For instance, in a conditional statement if E B, where E is an expression and B is a block, B may have a static error that
never causes a dynamic error due to E being always false. In general, it may be possible to prove a static completeness property
with respect to an extended dynamic semantics that nondeterministically chooses among all possible branches regardless of
the actual values of the tests that control branching, as done in [1]. In if E B, after evaluating E, that extended dynamic
semantics would nondeterministically either execute B or skip it, regardless of the value of E. As in [1], this hypothetical static
completeness property for Yul would show that the checks of the static semantics are, in a sense, the most liberal possible.
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where:
• cstate-to-vars abstracts a computation state to a variable symbol table.
• funenv-to-funtable abstracts a function environment to a function symbol table.
• check-safe-expression, from the static semantics, checks the safety of the expression expr,

returning the number of results if successful, or an error value otherwise.
• exec-expression, from the dynamic semantics, executes the expression expr, returning an ex-

pression outcome, described in Section 3.4.
• The theorem assumes that: the functions in the function environment pass the checks of the static

semantics, formalized by funenv-safep; results is not an error value (recognized by reserrp),
i.e. check-safe-expression succeeds, and results is the number of results of expr; the exe-
cution of expr does not exhaust the artificial limit, where reserr-limitp recognizes error values
that come from exhausting the limit.

• The theorem concludes that: the execution of expr does not return an error value; the new com-
putation state abstracts to the same variable symbol table as the old computation state; the actual
number of values in the outcome coincides with the statically computed one.

The theorems for the other exec-... functions are similar; when statement outcomes are involved
instead of expression outcomes, the conclusion about the number of values instead says that the actual
termination mode is an element of the set of possible modes calculated by the static semantics.

In these theorems, the funenv-safep hypothesis is critical to establish the static safety hypotheses
for the code of each called Yul function, which is obtained from the function environment. As the func-
tion environment is extended, the preservation of its safety relies on the static safety hypotheses for the
code containing the Yul function definitions added to the environment. When the function environment
is trimmed, its safety is preserved because it applies element-wise.

The inductively proved theorems about the exec-... functions are preceded by, and rely on, the
proofs of several theorems about funenv-safep, funenv-to-funtable, and other ACL2 functions.
Overall, the proofs are not conceptually difficult, but involve a bit of work.

4 Yul Transformations

While the formalization of Yul described in Section 3 has value on its own, our primary motivation for
developing it was to support the verification of Yul code transformations in the Solidity compiler. Our
work on transformations is fairly preliminary, yet illustrative.

4.1 Approach

Since the Solidity compiler is written in C++ [17], verifying the implementation of Yul transformations
is a daunting proposition. It is more feasible to generate, each time a Yul transformation is run, a proof of
the correctness of the new code with respect to the old code; a verifying (not verified) compiler approach.

Extending the Solidity compiler to generate such proofs is impractical, due to its complexity and
ownership. A more viable approach is to (1) replicate the Yul transformations in ACL2, (2) verify
correctness properties of the replicated transformations, and (3) validate the replicated transformations
by checking that they are consistent with the transformations in the compiler. Performing the third
step every time a transformation is run, and instantiating the general theorems of the second step to the
run, achieves the same goal as a proof-generating extension of the compiler, but without modifying the
compiler; in [5], we introduced the term ‘detached proof-generating extension’ for this approach.
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Yul transformation in ACL2

T (x,y)≜ . . . C(x,y)≜ . . .
⊢ ∀x,y. T (x,y) =⇒C(x,y)

Yul transformation in C++

theorem generation

Yul Yul

JSON JSON

AST a AST b

export export

convert convert

⊢C(a,b)

Figure 2: Proof Generation Approach for Yul Transformations

Figure 2 visualizes the approach. The top box is any one of the Yul transformations in the Solidity
compiler. The middle box is the replicated transformation in ACL2, formalized as a predicate T (x,y)
on old code x and new code y, accompanied by a correctness predicate C(x,y) (which may vary slightly
across transformations), and a general theorem that T implies C; this theorem is proved once, for each
transformation, under user guidance, with effort dependent on the complexity of the transformation. The
Solidity compiler has facilities to output Yul abstract syntax trees in JSON format at various stages of the
compilation process: these facilities are depicted as the ‘export’ boxes. We have built a tool, in ACL2,
to convert the resulting JSON into abstract syntax trees (ASTs) of our ACL2 formalization of Yul; this
is depicted as the ‘convert’ boxes. Each time the transformation is run, ASTs a and b for the old and
new code can be automatically generated; the bottom box can check that T (a,b) holds, and if so it can
instantiate the general theorem to obtain a proof of C(a,b) automatically. These last sentences say ‘can’
because we have not implemented this workflow yet, although we see no obstacle to doing that.

An alternative to verifying the correctness of the replicated transformations is to have them generate
proofs of correctness, as done in APT [13, 4, 6] and ATC [3], pushing the verifying compiler approach
further. But having pursued that approach in the tools just mentioned, for Yul we wanted to explore the
verification of the transformations. In summary, our approach for Yul transformation is a combination
of verifying and verified compiler: the former for the transformations in the Solidity compiler, and the
latter for the replicated transformations in ACL2.

4.2 Definitions

We have formalized the ForLoopInitRewriter, DeadCodeEliminator, and Disambiguator trans-
formations [19]. The first two are quite simple; the third one is relatively simple, but illustrates a general
important point.

The ForLoopInitRewriter transformation moves the initialization component of a for loop just
before the loop and wraps it and the loop in a block, e.g. the loop
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for { <init> } <test> { <update> } { <body> }

is transformed into the block5

{ <init> for { } <test> { <update> } { <body> } }

The scoping rules for for loops involve an exception: the scope of variables declared and functions
defined in the initialization block extends to the whole loop (test, update, and body). The purpose of
performing this transformation is to obviate the need for successive transformations to deal with this
scoping exception. This transformation is easily defined in ACL2, by recursion on the abstract syntax.

The DeadCodeEliminator transformation removes a simple form of dead code, namely the code in
a block that follows a break, continue, or leave statement, e.g. the block

{ <live> break <dead> }

is transformed into the block6

{ <live> break }

The purpose of this transformation is to reduce code size.
The Disambiguator transformation makes all the variable and function names unique across the

whole program. For instance, the example code in Section 3.3 is transformed into something like

{
let x
function f () {

function h1 () { ... }
let y1
{

let z
}

}
function g () {

let y2
function h2 () { ... }

}
}

where the two different variables y and functions h are renamed apart. There are many ways to rename
variables and functions apart, differing in the exact choice of names. To make our ACL2 definition of
the transformation simpler, and independent from the choice of names made by the Solidity compiler,
we formalized it as a relation instead of a function: the relation holds on old and new code exactly when
they are the same except for a consistent renaming of variables and functions such that the new code has
globally unique names. In fact, our definition consists of four independent components:

• A binary relation expressing consistent variable renaming.
• A binary relation expressing consistent function renaming.
• A unary relation expressing global uniqueness of variable names.
• A unary relation expressing global uniqueness of function names.
The binary relation for variable renaming consists of a family of recursive functions, such as

(define statement-renamevar ((old statementp) (new statementp) (ren renamingp))
:returns (new-ren renaming-resultp)

5More precisely, the transformation is recursively applied to <init>, <test>, <update>, and <body> as well.
6More precisely, the transformation is recursively applied to <live> as well.
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(statement-case
old
:block
(b* (((unless (statement-case new :block)) ...) ; return error

((statement-block new) new)
((okf &) (block-renamevar old.get new.get ren)))

(renaming-fix ren))
:variable-single
(b* (((unless (statement-case new :variable-single)) ...) ; return error

((statement-variable-single new) new)
((okf &) (expression-option-renamevar old.init new.init ren)))

(add-var-to-var-renaming old.name new.name ren))
...)) ; handle the other kinds of statements

where:
• old and new are the statements before and after the transformation.
• ren is a renaming, i.e. a list of cons pairs of identifiers ((x1 . y1) (x2 . y2) ...) where
x1, x2, etc. are all distinct and where y1, y2, etc. are all distinct. It is an injective alist with unique
keys, invertible into ((y1 . x1) (y2 . x2) ...). x1, x2, etc. are the variables in scope for
old; y1, y2, etc. are the variables in scope for new. x1 in old is renamed to y1 in new, x2 in old is
renamed to y2 in new, etc.; but x1 and y1 could be the same, or x2 and y2 could be the same, etc.

• If old is a block statement, new must be a block statement too; otherwise statement-renamevar
returns an error value, because new is not a valid result of transforming old.

• The block in new must be a valid result of transforming the block in old, which is checked by the
mutually recursive companion function block-renamevar.

• Since a block contributes no new variables outside it, statement-renamevar returns ren.7

• If old is a (single) variable declaration, say for x, new must be one too, say for y. The optional ini-
tializing expression of new must be a valid result of transforming the one of old, via the renaming
ren, which is then extended with the pair (x . y), and returned.

• The code for the other kinds of statements is not shown.
The binary relation for function renaming is defined similarly.

The unary relations for unique variable and function names go through the abstract syntax, keep
track of the set of all the names encountered so far, whether visible/accessible or not, and check that
every variable declaration or function definition introduces a name not already in the set.

The purpose of Disambiguator is to make it easier for subsequent transformations to move code
around, without worrying about name conflicts.

Our formalization of Disambiguator, unlike our formalizations of the other transformations, does
not consist of executable ACL2 code to run the transformation; it consists of executable ACL2 code to
check whether the result of the transformation is valid. According to the approach described in Section
4.1, the purpose of formalizing the transformation in ACL2 is to verify that, every time the Solidity
compiler runs it, the new code is equivalent to the old code. The old and new code are given as inputs
to our formalization of the transformation to check that the action of the Solidity compiler matches
our formalization; given a general proof of the correctness of our formalization (see Section 4.4), it is
possible to obtain a proof of the correctness of that run of the transformation by the Solidity compiler.
This relational approach, which isolates the formal definition and proofs from changeable details of the
implementation, may also be applicable to other Yul code transformations.

7The fixer renaming-fix is a no-op under the guard (renamingp ren), but it makes the return theorem unconditional.
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4.3 Restrictions

Some transformations expect the code to satisfy certain restrictions, which must be established by pre-
ceding transformations, and must be generally preserved by subsequent transformations. We formalized
some of these restrictions in ACL2 as predicates on the abstract syntax.

We formalized the restriction that for loops have empty initialization blocks. As mentioned in
Section 4.2, this restriction is established by ForLoopInitRewriter.

We formalized the restriction that code has no function definitions. Some transformations (not de-
scribed in this paper) move all the function definitions (after disambiguation) to a new top-level block,
so that subsequent transformations can take all the function definitions from the top-level block without
worrying about nested function definitions. Our formalized restriction just says that there are no func-
tion definitions: it applies to the non-top-level code, which is recursively processed by transformations,
stripped of the function definitions at the top level.

4.4 Proofs

We proved that (our formalization of) DeadCodeEliminator preserves the two restrictions in Section
4.3. Removing code does not introduce function definitions or code in for loop initialization blocks.
These proofs are automatic, after enabling the involved functions.

We proved that DeadCodeEliminator preserves the static semantics: if the old code is safe, so is
the new code, assuming the restriction about the absence of function definitions. The latter is critical: if a
function definition follows a break, removing the code after the break removes that function definition,
which the old code may be calling in non-dead code before the break. The theorem for statements is

(defthm check-safe-statement-of-statement-dead
(implies (and (statement-nofunp stmt)

(statement-noloopinitp stmt))
(b* ((varsmodes (check-safe-statement stmt varset funtab))

(varsmodes-dead (check-safe-statement (statement-dead stmt)
varset
funtab)))

(implies (not (reserrp varsmodes))
(and (not (reserrp varsmodes-dead))

(equal (vars+modes->vars varsmodes-dead)
(vars+modes->vars varsmodes))

(set::subset (vars+modes->modes varsmodes-dead)
(vars+modes->modes varsmodes)))))))

where:
• statement-dead removes dead code from a statement, according to the transformation: stmt is

the old statement, and (statement-dead stmt) is the new statement.
• varset and funtab are the variable and function symbol tables. For this transformation, they are

the same for old and new code; more complex transformations may require transforming these
tables as well.

• check-safe-statement, from the static semantics, checks the safety of a statement; if successful,
it returns an updated variable symbol table, and a set of possible termination modes.

• The theorem assumes that: the old statement has no function definitions (critical hypothesis); the
old statement has empty for loop initialization blocks (which slightly simplifies the proof); the
old statement is safe, i.e. varmodes is not an error value.
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• The theorem concludes that: the new statement is safe, i.e. varmodes-dead is not an error value;
the updated variable table after the new statement is the same as the one after the old statement;
the termination modes of the new statement are a subset of the ones of the old statement (because
the static semantics over-approximates them; for example, if a leave followed a break in the old
code, it would be absent in the new code).

The proof is automatic, after enabling the involved functions and also adding an :expand hint.8

We proved that DeadCodeEliminator preserves the dynamic semantics: the new code has the same
execution behavior as the old code, assuming the restriction about the absence of function definitions,
which is critical for the same reason explained above. The theorem for statements is

(defthm exec-statement-of-dead
(implies (and (statement-nofunp stmt)

(funenv-nofunp funenv))
(soutcome-result-okeq
(exec-statement
(statement-dead stmt) cstate (funenv-dead funenv) limit)

(exec-statement stmt cstate funenv limit))))

where:
• As in the previous theorem: stmt is the old statement; (statement-dead stmt) is the new

statement; statement-nofunp is the critical restriction.
• funenv-dead extend the transformation to (the function bodies in) function environments. When

a function is called during execution, its body is retrieved from the function environment: to
apply induction hypotheses during the proof, the function bodies in the old and new function
environments must be related by the transformation, in the same way as the code being executed.

• funenv-nofunp extends the restriction of no function definitions to (the function bodies in) func-
tion environments. This is also needed to apply induction hypotheses during the proof, because
the code of called functions is retrieved from the function environment.

• soutcome-result-okeq is an equivalence relation on soutcome-result that holds on a and b
exactly when either they are equal statement outcomes or they are both error values. This accom-
modates slight differences in the details of the error values returned by the dynamic semantics.9

• The theorem says that, assuming no function definitions in the old statement and function environ-
ment, executing the old statement gives equivalent results to executing the new statement on the
same computation state, the transformed function environment, and the same artificial limit.

The proof is not difficult, but involves certain :expand and :use hints, applied only to certain cases of
the induction via computed hints, because they slow down the proof if applied to all the cases. Perhaps
the :use hints could be avoided in some way, but the :expand hints may be necessary to defeat heuristics
that prevent the opening of certain recursive function calls.

The formulation of the theorem above does not distinguish between errors due to limit exhaustion
and errors due to unsafe operations. In general, a transformation should not turn terminating code into
non-terminating code. This can be proved by distinguishing between the two kinds of errors, as done in
the theorems for variable renaming, described next.

We proved that the variable renaming component of the Disambiguator preserves both static and
dynamic semantics. Although this is intuitively obvious, picturing the old and new code merely differing

8Without the :expand hint, the proof fails, presumably due to heuristics about opening recursive functions.
9These slight differences exist because the error values contain some user-oriented information about the error causes, e.g.

the constructs that cause the errors. But since this is unnecessary for verification, the error values should probably be simplified,
only distinguishing between limit exhaustion and unsafe operations. This should obviate the need for the equivalence relation.
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in variable names but otherwise completely isomorphic, it takes a bit of work to formulate and prove.
The theorem for the preservation of the static semantics for statements is

(defthm check-safe-statement-when-renamevar
(b* ((ren1 (statement-renamevar stmt-old stmt-new ren))

(varmodes-old (check-safe-statement stmt-old (varset-old ren) funtab))
(varmodes-new (check-safe-statement stmt-new (varset-new ren) funtab)))

(implies (and (not (reserrp ren1))
(not (reserrp varmodes-old)))

(and (not (reserrp varmodes-new))
(equal (vars+modes->vars varmodes-old)

(varset-old ren1))
(equal (vars+modes->vars varmodes-new)

(varset-new ren1))
(equal (vars+modes->modes varmodes-old)

(vars+modes->modes varmodes-new))))))

where:
• The theorem assumes that the new statement stmt-new is a valid result of transforming the old

statement stmt-old, given a renaming ren, which results in the possibly extended renaming ren1.
• The safety of the old/new statement is checked using the variable symbol table consisting of the

keys/values of the renaming ren, which are indeed the accessible variables, given how the binary
relation statement-renamevar is defined (see Section 4.2). The same function symbol table
funtab is used for both, since functions are not renamed, only variables.10

• The theorem assumes that the old statement is safe, and concludes that: the new statement is safe
too; the updated variable symbol table after the old/new statement consists of the keys/values of
the updated renaming ren1; the termination modes of the new statement are the same as the ones
of the old statement.

The proof involves some preparatory lemmas, as well as a custom induction scheme that takes into
account the recursive structure of both the variable renaming functions like statement-renamevar and
the static semantic functions like check-safe-statement.

The theorem for the preservation of the dynamic semantics for statements is

(defthm exec-statement-when-renamevar
(b* ((ren1 (statement-renamevar stmt-old stmt-new ren)))

(implies (and (not (reserrp ren1))
(cstate-renamevarp cstate-old cstate-new ren)
(funenv-renamevarp funenv-old funenv-new))

(b* ((outcome-old
(exec-statement stmt-old cstate-old funenv-old limit))

(outcome-new
(exec-statement stmt-new cstate-new funenv-new limit)))

(implies (and (not (reserr-nonlimitp outcome-old))
(not (reserr-nonlimitp outcome-new)))

(soutcome-result-renamevarp outcome-old
outcome-new
ren1))))))

where:
• The assumption involving statement-renamevar is the same as in the previous theorem.

10This is a motivation for decomposing Disambiguator into the four independent components described in Section 4.2.
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• cstate-renamevarp extends variable renaming to computation states, which are built from the
variables in the code. The old and new computation states are renamed according to ren.

• funenv-renamevarp extends variable renaming to function environments, from which the code
of called functions is retrieved. This does not depend on ren, because the variables in the body of
every function in the environment are renamed independently.

• soutcome-renamevarp (not directly used in the theorem) extends variable renaming to statement
outcomes a and b: the computation states must be related by cstate-renamevarp, and the termi-
nation modes must be the same.

• soutcome-result-renamevarp extends variable renaming to soutcome-result: it holds on a
and b exactly when either they are both statement outcomes satisfying soutcome-renamevarp or
they are both error values.

• reserr-nonlimitp recognizes non-limit error values. Thus, the theorem assumes that the execu-
tion of both old and new statement results in either a limit error or a statement outcome.

• The theorem concludes that the two executions yield equivalent results.
The proof involves several preparatory lemmas, a custom induction scheme that takes into account the re-
cursive structure of both the variable renaming functions like statement-renamevar and the execution
functions like exec-statement, and several computed hints to apply different collections of common
hints to different cases of the induction.

It may seem strange that the above theorem assumes, instead of concluding, that the execution of the
new statement does not yield a non-limit error value: compare the theorem for DeadCodeEliminator.
However, the preservation of the static semantics by variable renaming described earlier, and the general
proof of static soundness in Section 3.5, imply that the execution of the new statement does not yield a
non-limit error; thus, it can be assumed in the theorem above, making the proof slightly easier.

The dynamic semantics preservation theorems for DeadCodeEliminator require transforming the
function environment, but not the computation state or the limit. The dynamic semantics preservation
theorems for variable renaming require transforming the computation state and function environment,
but not the limit. Theorems for more complex transformations require transforming the limit as well,
because the number of execution steps can change.

5 Related Work

We are not aware of any other work on Yul using ACL2.
Other formalizations of Yul exist, written in generic math [14], K [11], Isabelle/HOL [10], Lean

[16, 22], and Dafny [8]. As pointed out in [14], none of these are peer-reviewed, except for [14] itself.
It does not appear that any of these formalizations include a static semantics separate from the dynamic
semantics, and a static soundness proof relating the two. On the other hand, [14] includes both a small-
step and a big-step dynamic semantics, with a proof of equivalence. An advantage of [14] compared to
the other formalizations, including ours, is that it is written in a generic mathematical notation that is
more widely accessible than the language and libraries of ACL2 and similar tools; a disadvantage is that
it is not machine-checked, unlike the ones developed with ACL2 and similar tools.

The README in the K formalization of Yul [11] says that its purpose is to perform translation valida-
tion of the Solidity compiler, which is exactly the same goal as ours; that README also indicates scripts to
run tests. It would be interesting to compare their work with ours, but the lack of published papers and de-
tailed documentation demands an examination of their code and prerequisite knowledge of K. The stated
purpose of [14] is to provide a widely accessible precise formalization of Yul. The purpose of [10, 16, 8]
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appears to be mainly the formal verification of Yul code, but not specifically Yul transformations.

6 Future Work

Although our formalization of the Yul core is essentially complete, it hard-wires some aspects of the
EVM dialect, which should better be kept more separate via a more explicit parameterization of the core
formalization over the dialect. This may take some effort because, despite the multi-dialect aspiration,
currently the Yul core and the EVM dialect are not crisply delineated, and manifest very much like one
integrated language; for instance, different dialects are supposed to have different type systems, but the
Yul syntax does not provide a way to specify types.11

More importantly than having a cleaner separation between core and dialects, the EVM dialect should
be formalized completely, since it is currently the only Yul dialect in practical use. This is a laborious
task because it involves modeling a large portion of the functionality of the EVM [26], although it does
not require a full formalization of the EVM itself.

Our work on transformations has barely scratched the surface. The Solidity compiler includes tens of
transformations, some of which are rather complex and involve EVM-dialect-specific features. Formaliz-
ing and verifying all of them is a substantial task, but it can be approached piecewise: each transformation
can be formalized and verified mostly on its own; dependencies among transformations can be handled
by formalizing the kinds of restrictions on Yul code exemplified in Section 4.3.

To verify the transformations performed by the Solidity compiler, the theorem generator depicted
in Figure 2 must be developed. Once all transformations have been formalized and verified, the gener-
ated proofs can be composed into a proof that the entire sequence of Yul transformations was correctly
applied.

7 Conclusion

Our formalization of Yul, like formalizations developed by others, does not contain any particularly in-
novative ideas, partly because Yul is a relatively simple language. However, a precise, machine-checked
formalization of Yul is clearly valuable. Furthermore, it is possible that extending the formalization to
the full EVM dialect may uncover more interesting formalization issues.

The work on verifying Yul transformations is more original, though there is some similar work (see
Section 5). An interesting finding of our work was that verifying the correctness of even fairly simple
transformations, such as those described in Section 4, whose correctness intuitively appears obvious,
required more work than expected. The proofs are not difficult, but a bit laborious.
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